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Boundary and interface conditions are derived for high-order finite difference
methods applied to multidimensional linear problems in curvilinear coordinates.
Difficulties presented by the combination of multiple dimensions and varying coeffi-
cients are analyzed. In particular, problems related to nondiagonal norms, a varying
Jacobian, and varying and vanishing wave speeds are considered. The boundary
and interface conditions lead to conservative schemes and strict and strong stability
provided that certain metric conditions are met.c© 2001 Academic Press

1. BACKGROUND

Phenomena that require an accurate description of high-frequency variation in space for
long times occur in many important applications such as electromagnetics, acoustics (all
cases of wave propagation), and direct simulation of turbulent and transitional flow; see,
for example [1–6]. Strictly stable high-order finite difference methods are well suited for
these types of problems (see [7–16]) because they guarantee bounded error growth in time
for realistic meshes.

Most of the development for these types of methods has considered constant-coefficient
problems on a Cartesian mesh. In [17] and [18], stable and conservative boundary and
interface conditions were derived for the one-dimensional (1D) constant coefficient Euler
and Navier–Stokes equations on multiple domains. A similar technique was used in [19–21]
for Chebyshev spectral methods.

In this paper we extend the constant-coefficient analyzis in [17] and [18] to scalar multi-
dimensional linear problems in curvilinear coordinates including block interfaces. Related
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previous work includes investigations of the metric derivatives in nonsmooth meshes (see
[22, 23]) and the treatment of parabolic and hyperbolic systems in curvilinear coordinates
on a single domain [14]. Many of the issues discussed in this paper are adressed in [24].

The rest of this paper will proceed as follows. Section 2 introduces the problem.
Section 3 defines the continuous problem and discusses well-posedness. Section 4 provides
an investigation of the discrete problem. Section 5 illustrates numerical experiments and in
Section 6 we summarize and draw conclusions.

2. INTRODUCTION

The 2D linear problem considered in this paper is

ut + Fx + Gy = h, [x, y] ∈ Ä, t ≥ 0,
u = f, [x, y] ∈ Ä, t = 0,

Lu = g, [x, y] ∈ δÄ, t ≥ 0,
(1)

whereh, f , g are the data of the problem,L is the boundary operator, and

F = F I + FV , F I = a1u, FV = −(b11ux + b12uy),

G = GI + GV , GI = a2u, GV = −(b21ux + b22uy).
(2)

The coefficientsai , bi j are known functions ofx, y, andt . For future reference we also
introduce

a= (a1,a2), F = (F,G), n = (n1, n2), B =
[
b11 b12

b21 b22

]
, (3)

wheren is the outward pointing unit normal onδÄ. We also demand that

xT (B+ BT )x ≥ 0. (4)

Equation (1) can be thought of as a model for the Euler, Navier–Stokes, or Maxwell’s
equations.

We consider the following concepts of well-posedness and stability (see [25]).

DEFINITION 1. The problem (1) is strongly well posed if the solutionu is unique, exists,
and satisfies

‖u‖2Ä +
∫ t

0
‖u‖2δÄ dt ≤ Kce

ηct

{
‖ f ‖2Ä +

∫ t

0

(‖h‖2Ä + ‖g‖2δÄ)dt

}
, (5)

whereKc andηc may not depend onh, f , g, and‖ · ‖Ä and‖ · ‖δÄ are suitable continuous
norms.

DEFINITION 2. The numerical approximation of (1) is strongly stable if for a sufficiently
fine mesh the approximative solutionU satisfies

‖U‖2Ä +
∫ t

0
‖U‖2δÄ dt ≤ Kdeηdt

{
‖ f ‖2Ä +

∫ t

0

(‖h‖2Ä + ‖g‖2δÄ) dt

}
, (6)

whereKd andηd may not depend onh, f , g, and‖ · ‖Ä and‖ · ‖δÄ are suitable discrete
norms.



HIGH-ORDER FINITE DIFFERENCE METHODS 151

DEFINITION 3. The numerical approximation of (1) is strictly stable if the analytical and
discrete growth rates (see (5) and (6)) satisfy

ηd ≤ ηc +O(1x), (7)

where1x is the mesh size.

The ambition in this paper is to develop a strictly stable high-order procedure for (1)
in curvilinear coordinates. In so doing, the difficulties presented by the combination of
multiple dimensions and varying coefficients will be analyzed. Our strategy is to mimic
the continuous procedure as closely as possible. The main analytical tool, i.e., the energy
method, leads to

‖8‖2t = BT+GR1+GR2+ DI + IT, (8)

where8 stands for the continuous or discrete solution. BT, GR1, GR2, and DI denote
boundary terms, growth terms due to varying wave speeds, growth terms due to forcing,
and dissipation, respectively. IT denotes interface terms and exists only in the discrete case.
The terms in (8) will be studied closely below.

3. THE CONTINUOUS PROBLEM

Consider the problem (1) on a curvilinear domain. By introducing the transformation
t = τ, x = x(ξ, η), y = y(ξ, η) and its inverseτ = t, ξ = ξ(x, y), η = η(x, y), the new
problem becomes

Jur + (F̂)ξ + (Ĝ)η = ĥ, [ξ, η] ∈ Ä̂, τ ≥ 0,

u = f, [ξ, η] ∈ Ä̂, τ = 0, (9)

L̂u = ĝ, [ξ, η] ∈ δÄ̂, τ ≥ 0,

whereĥ = Jh, f, ĝ are the data of the problem andÄ̂ = [ξ, η] ∈ [−1, 1]× [0, 1]. The new
transformed fluxes are

F̂ = J(F · ∇ξ) = F̂ I + F̂V , F̂ I = â1u, F̂V = −[b̂11uξ + b̂12uη],
(10)

Ĝ = J(F · ∇η) = ĜI + ĜV , ĜI = â2u, ĜV = −[b̂21uξ + b̂22uη],

where

â1 = Ja · ∇ξ, b̂11 = J∇ξT · B∇ξ, b̂12 = J∇ξT · B∇η,
(11)

â2 = Ja · ∇η, b̂21 = J∇ηT · B∇ξ, b̂22 = J∇ηT · B∇η

andB is given in (3). For later reference we include the metric relations

Jξx = yη, Jξy = −xη, J = xξ yη − xηyξ ,
(12)

Jηx = −yξ , Jηy = xξ , J = (ξxηy − ξyηx)
−1.
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3.1. The Energy Method

Let

(u, v)J =
∫ 1

0

∫ 1

−1
(uv)Jdξ dη, ‖u‖2J = (u, u)J, (13)

(u, v) =
∫ 1

0

∫ 1

−1
(uv) dξ dη, ‖u‖2 = (u, u), (14)

(u, v)E,W =
∫ 1

0
(uv)E,W dη, ‖u‖2E,W = (u, u)E,W, (15)

(u, v)N,S =
∫ 1

−1
(uv)N,S dξ, ‖u‖2N,S = (u, u)N,S (16)

denote the weightedL2 scalar product and norm, theL2 scalar product and norm, the
boundary scalar products, and boundary norms, respectively. The subscriptsE, W, N, and
S refer to the EAST, WEST, NORTH, and SOUTH boundaries, as in Fig. 1.

The energy-method applied to (9) leads to(‖u‖2J)τ = − [(u, F̂ I + 2F̂V )E − (u, F̂ I + 2F̂V )W]︸ ︷︷ ︸
EAST-WEST

− [(u, ĜI + 2ĜV )N − (u, ĜI + 2ĜV )S]︸ ︷︷ ︸
NORTH-SOUTH

− [(u, F̂ I
ξ

)− (uξ , F̂ I )+ (u, ĜI
η

)− (uη, ĜI )
]︸ ︷︷ ︸

GR1

+ [(u, ĥ)+ (ĥ, u)]︸ ︷︷ ︸
GR2

+ [(uξ , F̂V )+ (F̂V , uξ )+ (uη, ĜV )+ (ĜV , uη)].︸ ︷︷ ︸
DI

(17)

GR1 and GR2 in (17) can lead to a growth or decay in‖u‖2J but will not affect well-
posedness; they can be estimated as

GR1≤ η1c‖u‖2, GR2≤ η2c‖u‖2+ 1

η2c
‖ĥ‖2. (18)

The metric relations (12) show that GR1 vanishes for constant-coefficient problems. To
bound‖u‖2J in time, the first two terms must be bounded using the correct boundary

FIG. 1. The computational domain.
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conditions and the dissipation DI must have the right sign. The introduction ofv = (uξ , uη)T ,
T = (∇ξ ,∇η) leads to (see Eqs. (17), (10), and (11))

DI = −J(Tv)T (B+ BT )(Tv) ≤ 0 (19)

since (4) holds.

3.2. Boundary Conditions

Consider the first two terms in (17) and recall the definitions (3). The outward pointing
unit normal onδÄ̂ is

n(ξ = ±1, η) = ±∇ξ|∇ξ | , n(ξ, η = 0, 1) = ∓∇η|∇η| , (20)

where|∇ξ | =
√
ξ2

x + ξ2
y and|∇η| =

√
η2

x + η2
y. With piecewise continuous normals, the

integration by parts procedure leading to (17) is well defined.
In [27] it is shown that the boundary conditions leading to an energy estimate become

−â1(−1, η, t) = −Ja · ∇ξ < 0, JF · ∇ξ = F̂ = F̂W(η, t),

−â1(−1, η, t) = −Ja · ∇ξ ≥ 0, JFV · ∇ξ = F̂V = F̂V
W(η, t),

(21)+â1(+1, η, t) = Ja · ∇ξ ≥ 0, JFV · ∇ξ = F̂V = F̂V
E(η, t),

+â1(+1, η, t) = Ja · ∇ξ < 0, JF · ∇ξ = F̂ = F̂ E(η, t)

at ξ = ±1, while

−â2(ξ, 0, t) = −Ja · ∇η < 0, JF · ∇η = Ĝ = ĜS(ξ, t),

−â2(ξ, 0, t) = −Ja · ∇η ≥ 0, JFV · ∇η = ĜV = ĜV
S(ξ, t),

(22)+â2(ξ, 1, t) = Ja · ∇η ≥ 0, JFV · ∇η = ĜV = ĜV
N(ξ, t),

+â2(ξ, 1, t) = Ja · ∇η < 0, JF · ∇η = Ĝ = ĜN(ξ, t)

should be used atη = 0, 1. A compact formulation of (21) and (22) (see also [24]) is

a · n ≤ 0⇒ F · n = FδÄ · n, a · n > 0⇒ FV · n = FV
δÄ · n. (23)

In [27] it is shown that the boundary conditions (21), (22), (23) leads to the estimate

(‖u‖2J)τ ≤ ∑
I=E,W,N,S

1

ηI
‖F̃ I ‖2I +GR1+GR2+ DI, (24)

where

F̃ E = σ1F̂ E + (1− σ1)F̂
V
E, σ1 = (1− |â1|/â1)/2,

F̃W = σ3F̂W + (1− σ3)F̂
V
W, σ3 = −(1+ |â1|/â1)/2,

(25)
G̃N = σ5ĜN + (1− σ5)Ĝ

V
N, σ5 = (1− |â2|/â2)/2,

G̃S = σ7ĜS+ (1− σ7)Ĝ
V
S , σ7 = −(1+ |â2|/â2)/2
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and

ηE,W=
∫ 1

0 |â1|u2 dη∫ 1
0 u2 dη

∣∣∣∣
ξ=1,−1

, ηN,S=
∫ 1
−1|â2|u2 dξ∫ 1
−1 u2 dξ

∣∣∣∣
η=1,0.

The parametersηE, ηW, ηN, ηS are strictly positive ifâ1, â2 are zero for a finite num-
ber of points. For vanishing wave speeds in (25) we defineσi (â1= 0)= 0, i = 1, 3 and
σi (â2 = 0) = 0, i = 5, 7.

Time-integration of the estimate (24) leads to an energy estimate of the form (5) if (19)
holds. Provided that a solution exists we can conclude that the following theorem holds.

THEOREM1. Problem(9), (21), (22)is strongly well posed.

3.3. Treatment of Corners

At the corners of the computational domain, the normals are discontinuous and extra care
is required. As an example, the value ofn close to the NORTH-EAST corner (see Fig. 1) is
given by

nN(1, 1) = lim
δ→0+

n(1− δ, 1), nE(1, 1) = lim
δ→0+

n(1, η = 1− δ). (26)

The normals close to the other corners are defined in a similar way. The metric coefficients
at the corners are well defined. Once the corner values of the metric coefficients, the normals,
the wave vector, and the fluxes (see (20), (10), (11)) are well defined, condition (23) can be
applied.

Another aspect of corner treatment is the boundary data compatibility. Consider the gen-
erally formulated problemP(uτ , uξ , uη, uξξ , uξη, uηη) = 0, whereP is a linear differential
operator with boundary conditions̃F(u, uξ , uη) = f (1, η, τ )andG̃(u, uξ , uη) = g(ξ, 1, τ )
close to the NORTH-EAST corner. We can differentiateF̃, f with respect toη, τ andG̃, g
with respect toξ, τ . By doing that and usingP = 0 to reduce the number of unknowns, we
obtain a matrix equation of the formAU = H , whereU = [u, uτ , uξ , uη, uξη, . . .]T and
H = [ f, g, fτ , gτ , fη, gξ , . . .]T .

The rows ofA are given by the coefficients inP, F̃ , andG̃. The number of compatibility
conditions are given by the number of linearly dependent rows inA. With two (or more)
rows identical inA, the corresponding components inH must also be identical; that identity
is called a compatibility condition.

As an example, consider Laplaces equationuξξ + uηη = 0 close to the NORTH-EAST
corner augmented with̃F = α1u+ β1uξ , G̃ = α2u+ β2uη. The relationsF̃ = f, G̃ = g,
and F̃η = fn, G̃ξ = gξ lead to

α1 β1 0 0

α2 0 β2 0

0 0 α1 β1

0 α2 0 β2




u
uξ
uη
uξη

 =


f
g

fη
gξ

⇔

α1α2 0 0 −β1β2

α1α2 0 0 −β1β2

0 0 α1 β1

0 α2 0 β2




u
uξ
uη
uξη



=


α2 f − β1gξ
α1g− β2 fη

fη
gξ
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Obviously α2 f − β1gξ = α1g− β2 fη is required (the compatibility condition). Higher
order compatibility conditions are obtained by considering higher derivatives ofP, F̃ ,
andG̃.

Remark. As was shown above, it is an algebraically complex procedure to explicitly
formulate the compatibility relations, even for simple model problems. However, compa-
tibility is guaranteed if the same continuous solution is used to provide data for bothf
andg. In that case we havef (1, η, τ ) = h(1, η, τ ), g(ξ, 1, τ ) = h(ξ, 1, τ ). At far-field
boundaries that situation often occurs sinceh = h∞ = const. is a common choice.

3.4. Interface Conditions

Boundary and interface conditions of the flux type (see (21) and (22)) require extra careful
treatment; see [28] for an example.

3.4.1. Interface Conditions in the Curvilinear Case

To apply the Simultaneous Approximation Term (SAT) technique [16] on the fluxes at
an interface between two blocks with different coordinate transformations and matching
gridlines (see [17], [18] for the 1D treatment) requires that we identify the continuous part.
Matching gridlines atξ = ξ0 = const implies

(xξ )1 6= (xξ )2, (yξ )1 6= (yξ )2, (xη)1 = (xη)2, (yη)1 = (yη)2 (27)

while we have

(xξ )1 = (xξ )2, (yξ )1 = (yξ )2, (xη)1 6= (xη)2, (yη)1 6= (yη)2 (28)

atη = η0 = const. The subscripts 1, 2 refer to the two coordinate transformations.
Equations (10), (12) and (27), (28) immediately lead to the conclusion that

F̂1(ξ0, η, τ ) = F̂2(ξ0, η, τ ), Ĝ1(ξ0, η, τ ) 6= Ĝ2(ξ0, η, τ ), (29)

F̂1(ξ, η0, τ ) 6= F̂2(ξ, η0, τ ), Ĝ1(ξ, η0, τ ) = Ĝ2(ξ, η0, τ ); (30)

i.e., F̂ is continuous acrossξ = const whileĜ is continuous acrossη = const.

3.4.2. Interface Conditions and Vanishing Wave Speeds

Another problem with flux-interface conditions appears when the wave speeda goes to
zero. Consider the two constant-coefficient problems

ut + F(u)x = 0, −L ≤ x ≤ 0 and vt + F(v)x = 0, 0≤ x ≤ L ,

where F(w) = aw + FV (w) and FV (w) = −εwx. Both problems have homogeneous
outer boundary conditions at|x| = L and zero initial data, and they are connected through
interface conditions atx = 0. We will compare the effects of flux-interface conditions
(F(u) = F(v), FV (u) = FV (v)) and variable-interface conditions (u = v, ux = vx) on
the solutions.
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By transforming the problem forv on [0,+L] onto [−L , 0] via the transformation
x→−ξ , and then replacingξ with x, we obtain

ψt +3ψx = εψxx, (31)

whereψ = (u, v)T ,3 = diag(a,−a), andB−Lψ = 0 denotes the outer boundary condi-
tions atx = −L. B0ψ = 0 represents the transformed interface conditions

au− εux = av + εvx, −εux = +εvx or u = v, ux = −vx. (32)

We will treat (31) as a half-plane problem, which means that we letL →∞ and replace
the influence ofB−L by only admitting bounded solutions asx→−∞.

The Laplace-transform technique applied to (31) leads to

ũ(x, s) = σ1(s) exp(κ1(s)x), ṽ(x, s) = σ2(s) exp(κ2(s)x),

wheres is the dual variable with respect to time and

κ1 = + a

2ε
+
√(

a

2ε

)2

+ s

ε
, κ2 = − a

2ε
+
√(

a

2ε

)2

+ s

ε
.

Note that both̃u andṽ decay away from the boundaryx = 0.
The interface conditions (32) lead to the equationE(s)Eσ = 0 whereEσ = (σ1, σ2)

T . A
well-posed bounded solution is obtained only if det(E(s)) 6= 0 for <(s) > 0. The flux-
interface and variable-interface conditions in (32) lead to

det(E f (s)) = −2εa

√(
a

2ε

)2

+ s

ε
, det(Ev(s)) = 2

√(
a

2ε

)2

+ s

ε
(33)

respectively. Obviously the flux-interface conditions can lead to unbounded growth for
vanishing wave speeds, because det(E f )a→0 = 0 independent ofs. The variable-interface
conditions, on the other hand, lead to a well-posed problem since det(Ev)a→0 = 2

√
(s/ε).

A similar analyzis of the flux-boundary conditionau− εux = 0 for the single do-
main yields det(E(s)) = a/2+

√
(a/2)2+ sε. Consequently, the problem with unbounded

growth for vanishing wave speed does not exist in the boundary condition case because
det(E)a→0 =

√
(sε).

Remark. As a consequence of the investigation above, we will use flux conditions at
outer boundaries and variable conditions or a combination of variable and flux conditions
(see theRemarkat the end of Section 4.3.2) at interfaces.

4. THE DISCRETE PROBLEM

Let theN × N matrix Pξ and theM × M matrix Pη be 1D symmetric positive definite
matrices with blocks in the upper left and lower right corner, see [27]. A productav can be
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FIG. 2. The single domain case in transformed space.

arranged discretely (whereav ≈ AV) as (see Fig. 2)

AV =



Ã1

Ã2 0
. . .

0 ÃN−1

ÃN





Ṽ1

Ṽ2
...

Ṽ N−1

Ṽ N


, Ṽ i =


Vi 1

Vi 2
...

Vi M−1

Vi M

 , (34)

where Ãi = diag(ai j ). Also, the N × N matricesJE, JW, Iξ and theM × M matrices
JN, JS, Iη have the form

JE,N =

0 · · · 0
...

. . .
...

0 · · · 1

, JW,S =

1 · · · 0
...

. . .
...

0 · · · 0

, Iξ,η =

1 · · · 0
...

. . .
...

0 · · · 1

. (35)

The subscriptsE,W, N, andSrefers to the EAST, WEST, NORTH, and SOUTH boundaries
(see Fig. 2).

4.1. The Norms

The norms and scalar- products corresponding to (13)–(16) are

(U,V)J = U T (Pξ ⊗ Pη)J V, (U,U )J = ‖U‖2J, (36)

(U,V) = U T (Pξ ⊗ Pη)V, (U,U ) = ‖U‖2, (37)

(U,V)E,W = U T (JE,W ⊗ Pη)V, ‖U‖2E,W = (U,U )E,W, (38)

(U,V)N,S = U T (Pξ ⊗ JN,S)V, ‖U‖2N,S = (U,U )N,S. (39)

Obviously, the relations (37)–(39) define norms sincePξ and Pη are positive definite ma-
trices. What about(Pξ ⊗ Pη)J in (36)?

The metric scalarJ is defined in (12). In matrix formulation we have

J = diag( J̃i ), i = 1, . . . , N J̃i = diag(Ji j ), j = 1, . . . ,M. (40)

In [27], the following lemma was shown to hold.
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FIG. 3. Minimum eigenvalue ofP D+ DP as a function of1x.

LEMMA 1. Let M = Pξ ⊗ Pη. If the first and last r components iñJi are constants and
the first( J̃1, . . . , J̃q) and last( J̃N−(q−1), . . . , J̃N) q blocks in J are equal, then M J is a
norm.

Remark. The conditions in Lemma 1 (i.e., thatJ must be constant in the firstq, r points
normal and adjacent to the boundaryδÄ) are theoretically ideal conditions. In practice one
approaches the ideal condition with increasing resolution on a smooth mesh close to the
boundary because

J(i, j )− J(0, j ) = Jξ (0, η j )(i1ξ)+O(1ξ2), i = 1, . . . ,q,

J(i, j )− J(i, 0) = Jη(ξi , 0)( j1η)+O(1η2), j = 1, . . . , r,

where it is assumed thatJ(0, j ), J(i, 0) are the values ofJ at the boundaries. This process is
illustrated in Fig. 3, where the minimum eigenvalue ofP D+ DP as a function of increasing
resolution is shown. The minimum eigenvalue goes from a negative value for large1x to
a positive one for small1x.

Remark. With lower accuracy requirements (see [27]) we can use diagonal norms
Pξ , Pη, which guarantees thatM J is a norm for allJ.

4.2. The Single-Domain Problem

The discrete formulation of (9), (21), (22) with the SAT technique [16] for incorporating
flux boundary conditions is

JUτ + Dξ F + DηG = h+ PT, U (0) = f, (41)
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where the continuous derivativesFξ ,Gη are approximated with

Dξ F = (P−1
ξ Qξ ⊗ Iη

)
F, DηG =

(
Iξ ⊗ P−1

η Qη

)
G (42)

and

PT = (P−1
ξ JE ⊗ Iη61

)
(F − FE)+

(
P−1
ξ JE ⊗ Iη62

)(
FV − FV

E

)
+(P−1

ξ JW ⊗ Iη63
)
(F − FW)+

(
P−1
ξ JW ⊗ Iη64

)(
FV − FV

W

)
+(Iξ65⊗ P−1

η JN
)
(G− GN)+

(
Iξ66⊗ P−1

η JN
)(

GV − GV
N

)
+(Iξ67⊗ P−1

η JS
)
(G− GS)+

(
Iξ68⊗ P−1

η JS
)(

GV − GV
S

)
. (43)

For notational simplicity, the “hat” notation for the fluxes and transformed coefficients
introduced in (9)–(11) are omitted. TheN × N matrix Qξ and theM × M matrix Qη

are defined below in (46). Fluxes with subscriptsE,W, N, andS are boundary data. The
matrices61–68 will be determined below.

Remark. In (43), compatible data in the sense that was discussed in Section 3.3 is used.
Compatibility is a continuous issue; the discrete task is to impose the (compatible) data in
a stable and accurate way.

4.2.1. The Energy Method

Multiplying (41) from the left withU T (Pξ ⊗ Pη), introducing the notationM = Pξ ⊗ Pη,
and adding the transpose of the equation leads to(‖U‖2J)τ = BT+GR1+GR2+ DI, (44)

where BT= E-W+ N-S+ (U, PT)+ (PT,U ) and

E-W = −[U T (Bξ ⊗ Pη)(F
I + 2FV )+ (F I + 2FV )T (Bξ ⊗ Pη)U ]/2,

N-S= −[U T (Pξ ⊗ Bη)(G
I + 2GV )+ (GI + 2GV )T (Pξ ⊗ Bη)U ]/2,

GR1= −[[(U, Dξ F I )+ (Dξ F I ,U )] − [(F I , DξU )+ (DξU, F I )]]/2
(45)− [[(U, DηG

I )+ (DηG
I ,U )] − [(GI , DηU )+ (DηU,G

I )]]/2,

GR2= +[U T Mh+ hT MU ],

DI = +[((DξU, FV )+ (FV, DξU )+ (DηU ),G
V )+ (GV , DηU )].

In (44) we have assumed that the metric transformation is such thatM J is a norm. The
notations and abbreviations

Qξ + QT
ξ = Bξ = JE − JW, Qη + QT

η = Bη = JN − JS (46)

have been used to expand (44).
Note the close similarity of the discrete energy estimate (44), (45) with the corresponding

continuous one; see (17). Just as in the continuous case GR1 and GR2 will at most create
an exponential time growth; they can be estimated as

GR1≤ η1d‖U‖2, GR2≤ η2d‖U‖2+ 1

η2d
‖h‖2. (47)

We make the following assumption.
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ASSUMPTION1. The bounds in the estimates (18) and (47) satisfy

ηid ≤ ηic +O(1ξ,1η), i = 1, 2. (48)

To obtain an energy estimate we must determine under what conditions the dissipation
(DI) is negative definite and which values we must assign to the matrices61–68 to obtain
bounded contributions from the boundary.

4.2.2. The Numerical Dissipation

The DI (see (10) and (45)) is

DI = −
[

DξU

DηU

][
B11M + M B11 B21M + M B12

B12M + M B21 B22M + M B22

][
DξU

DηU

]
, (49)

whereBkl(i, j ) = bkl(ξi , η j ). In [27], the following lemma was shown to hold.

LEMMA 2. If the boundary blocks HLξ , H R
ξ in Pξ have the size q× q, the boundary

blocks HL
η , H R

η in Pη have the size r× r , and the matrices Bkl in (49) are constant in the
first q, r points normal and adjacent to the boundaryδÄ, then the dissipation DI defined in
(49) is negative definite.

Remark. The conditions in Lemma 2 (i.e., that the matricesBkl in (49) are constant in the
firstq, r points normal and adjacent to the boundaryδÄ) are theoretically ideal conditions. In
practice, one approaches the ideal condition with increasing resolution, smooth coefficients
bi j and a smooth mesh; see the twoRemarkson J in Section 4.1.

4.2.3. Boundary Conditions

Let us estimate the terms at the EAST boundary. By collecting terms we get

BTE = −
{

U T [ Pη(I /2−61)]F
I + (F I )T

[(
I /2−6T

1

)
Pη
]
U
}

−{U T [ Pη(I −61−62)]F
V + (FV )T

[(
I −6T

1 −6T
2

)
Pη
]
U
}

− [U T Pη F̃ E + (F̃ E)
T PηU ],

whereF̃ E = 61FE +62FV
E .

Obviously, the terms involving the viscous fluxes must be removed. This yields62 =
I −61. By observing thatF I = 3EU where3E = diag((â1)N j ) (see (11) for a definition
of â1) we obtain

BTE = −U T
[
Pη(I /2−61)3E +3E

(
I /2−6T

1

)
Pη
]
U − [U T Pη F̃ E + (F̃ E)

T PηU ].

Now we choose61 such that(I /2−61)3E = |3E|/2. This choice and an entirely similar
procedure at the other boundaries yields

(‖U‖2J)τ ≤ ∑
I=E,W,N,S

1

ηI
‖F̃ I ‖2I +GR1+GR2+ DI, (50)
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where

F̃E = 61FE + (I y −61)F
V
E , 61 =

(
I y − |3E|3−1

E

)
/2,

F̃W = 63FW + (I y −63)F
V
W, 63 = −

(
I y + |3W|3−1

W

)
/2,

(51)
G̃N = 65GN + (Ix −65)G

V
N, 65 =

(
Ix − |3N |3−1

N

)
/2,

G̃S = 67GS+ (Ix −67)G
V
S , 67 = −

(
Ix + |3S|3−1

S

)
/2,

62 = I y −61, 64 = −I y −63, 66 = Ix −65, 68 = −Ix −67, (52)

and

ηI = 1

2

(U, |3I |U )I + (|3I |U,U )I ]

(U,U )I
, I = E,W, N, S.

Note the close similarity between the numerical and continuous boundary procedure
(see (25) and (51)). For vanishing wave speeds in (51) we follow the procedure in the
continuous case (see the end of Section 3.2.) and define6i (â1 = 0) = 0, i = 1, 3 and
6i (â2 = 0) = 0, i = 5, 7.

The similarity of the discrete energy estimate (50) with the corresponding continuous one
(see (24)) implies strict stability. Time-integration of (50) leads to an estimate of the form
(6) if Assumption 1 and Lemma 2 hold. We can conclude that the following theorem holds.

THEOREM2. The approximation(41) of the problem(9), (21), (22) is both strictly and
strongly stable if Assumption1 and Lemma2 hold and61–68 are given by(51) and(52).

4.3. The 1D Multiple-Domain Problem Revisited

Before we consider the 2D multiple-domain problem, let us once more look at the 1D
multiple-domain problem considered in [17, 18].

4.3.1. Derivation of the Q-Formulation for Interface Problems

Consider the hyperbolic interface problem

ut + ux = 0, −1≤ x ≤ 0 and vt + vx = 0, 0≤ x ≤ 1 (53)

augmented with suitable initial and boundary data and the interface conditionu = v at
x = 0. The straightforward approximation of (53) is

Ut + P−1
L QLU = P−1

L (σL(UN − V0)eN),
(54)

Vt + P−1
R QRV = P−1

R (σR(V0−UN)e0),

where U = (U0, . . . ,UN)
T , eN = (0, . . . ,0, 1)T , V = (V0, . . . ,VM)

T , and e0 = (1,
0 . . . ,0)T .

The boundary terms from the left (L) and right (R) outer boundaries are ignored. The
formulation (54) can also be written as

PWt + (Q+6)W= 0, (55)
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whereW = (U,V)T , P = diag(PL , PR), Q = diag(QL , QR), and

6 =

0 0

6̃

0 0

, 6̃ =
[−σL +σL

+σR −σR

]
. (56)

We can now split upQ+6 into a symmetric and a skew-symmetric part as

Q+6 = (Q+6)− (Q+6)T
2︸ ︷︷ ︸

Qsk

+ (Q+6)+ (Q+6)
T

2︸ ︷︷ ︸
D

.

The 2× 2 blocks ofQsk andD corresponding to the nonzero elements in6 are

Q̃sk = 1

2

[
0 (σL − σR)

−(σL − σR) 0

]
, D̃ = 1

2

[
1− 2σL σL + σR

σL + σR −1− 2σR

]
.

Henceforth, the “tilde” sign will indicate the 4× 4 block that couples the solutions in the
left and right domains. Equation (55) now becomes

PWt + (Qsk+ D)W = 0. (57)

In [17] it was shown that (54) is conservative ifσR = σL − 1. By introducing this condition
in Q̃sk andD̃ we obtain the final form of the difference operator,

Q̃sk = 1

2

[
0 1
−1 0

]
, D̃ = σ

[
1 −1
−1 1

]
, (58)

whereσ = 1/2− σL .
The formulation (57), (58) hereafter referred to as the Q-formulation is a rearranged form

of the original formulation (54). However, the Q-formulation simplifies and even extends
the possibility to formulate suitable penalty terms for second-order derivatives.

4.3.2. The Q-Formulation for Advection–Diffusion Interface Problems

Consider

ut + F(u)x = 0, −1≤ x ≤ 0 and vt + F(v)x = 0, 0≤ x ≤ 1, (59)

where F(w) = a(x, t)w − εwx augmented with suitable initial, boundary, and interface
conditions. An approximation of (59) using the Q-formulation is

PWt + (Qsk)(AW)− ε(Qsk+ D2)P
−1(Qsk+ D3)W = D1W, (60)

whereW = (U,V)T andP = diag(PL , PR). The matrixA has the values ofa(xi , t) on the
diagonal. The operatorQsk is defined in Section 4.3.1., and

D̃i = σi

[
1 −1
−1 1

]
, i = 1, 2, 3 (61)



HIGH-ORDER FINITE DIFFERENCE METHODS 163

as in (58). The dissipationD1 is formulated as acting onW, which is a more general
formulation that includes penalty on the flux(σ1 = σa(0, t)) as well as penalty on the
variables.

We can now prove

THEOREM3. The approximation(60), (61) of the problem(59) with the choices

σ1 ≤ 0, σ2 = 0, σ3 = 0 (62)

is conservative and stable.

Proof. The energy method applied on (60) leads to

‖W‖2t = (DW, AW)− (D(AW),W)︸ ︷︷ ︸
GR1

− 2ε(DW,DW)︸ ︷︷ ︸
DI

−WT B(AW− 2εDW)︸ ︷︷ ︸
BT

+ IT,

whereDW = P−1QskW and the interface terms IT are defined as

IT =
[

W
DW

]T

0

[
2D1+ 2εD2P−1D3 ε(D2− D3)

ε(D2− D3) 0

] [
W
DW

]
0

. (63)

The growth (GR1), the dissipation (DI), and the ordinary boundary terms (BT) match the
terms in the corresponding continuous estimate perfectly. The choices (62) make the term
IT maximally negative definite and lead to stability. The approximation (60) can now can
be written

PWt + Qsk(AW− εP−1QskW) = D1W, (64)

which leads to conservation.j

Consider

PWt + Q(AW− εP−1QW) = (D1+ (Q− Qsk)A)W + ε(QskP−1Qsk− Q P−1Q)W,

(65)

which is a formulation of (64) in the usual penalty form. The Q-formulation simplifies the
construction of complex suitable penalty terms considerably.

Remark. The Q-formulation also removes the problem with vanishing wave speeds
discussed in Section 3.4.2. To see this, letε = 0 in (65). Obviously, the amount of dissipation
on the right-hand side of (65) is nonzero even if the wave speedA→ 0. The Q-formulation
can be considered to combine flux and variable interface conditions.

Remark. The linear continuous problem (1) considered in this paper does not of course
produce any shocks. However, conservation is nevertheless a desirable property since we
aim for a discrete approximation with the same behavior as the linear continuous problem,
which indeed is conservative. In [18], it was shown that the conditions for conservation were
a subset of the necessary conditions for stability. In this case, the situation is similar. The
conservativion form (64) is obtained from (60) by lettingD2 = D3 = 0, which obviously
[see (63)] is necessary for stability since the (2, 2) element in the stability matrix is zero.
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FIG. 4. The multiple domain mesh in transformed space.

4.4. The 2D Multiple-Domain Problem

In this section, an interface atξ = 0 with matching gridlines (see Fig. 4) is considered.
Matching gridlines implies that the number of points in theη direction(M) is the same on
both sides ofξ = 0. We will also assume thatPL

η = PR
η = Pη andQL

η = QR
η = Qη. The

difference operatorsDL
ξ , DR

ξ can be different in the left and right domains and, in general,
1ξL 6= 1ξR andNL 6= NR.

Remark. The treatment of two subdomains generalizes to an arbitrary number of ad-
joining 2D subdomains, in theξ and/orη coordinates. The adjoining subdomains must
have point matching gridlines, and the tangential differentiation operators at the interface
must be identical. No corner point ambiguities exist at the discrete level, since the proofs
of conservation and stability depend only on the interface treatment (including the corner
point) and the two adjoining subdomains. In principle, an arbitrary number of subdomains
can coincide at one point without causing ambiguities.

A multiple-domain Q-formulation of the problem (9), (21), (22) is

J̄ Wt + Dsk
ξ F + DηG = M̄−1(D ⊗6Pη)W + h+ PT, W(0) = f, (66)

whereW = (U,V)T . The solutions in the left (L) and right (R) domains are denoted,
respectively, byU andV , and

Dsk
ξ = M̄−1

(
Q̄sk
ξ ⊗ Pη

)
, Dη = M̄−1(P̄ξ ⊗ Qη). (67)

In (66), PT denotes the boundary conditions in (41) at the NORTH, EAST, SOUTH, WEST
boundaries in penalty form. Theξ derivatives inF,G are approximated withDsk

ξ . The
remaining definitions and notations used in (66) areQ̄sk

ξ = Q̄ξ +1,

M̄ =
[

ML 0

0 MR

]
, J̄ =

[
JL 0

0 JR

]
, Q̄ξ =

[
QL
ξ 0

0 QR
ξ

]
, (68)

1 =

0 0

1̃

0 0

, D =

0 0

D̃
0 0

, (69)
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P̄ξ =
[

PL
ξ 0

0 PR
ξ

]
, 1̃ = −1

2

[
1 −1
1 −1

]
, D̃ =

[
1 −1
−1 1

]
. (70)

The matrix coefficient6 will be determined by stability requirements.
The Q-formulation automatically leads to conservation:

THEOREM4. The approximation(66) of (9), (21), (22) is conservative.

The proof of theorem 4 is given in [27]. We will now prove the following theorem.

THEOREM5. The approximation(66) of the problem(9), (21), (22) is both strictly and
strongly stable if theorem2 holds and6Pη + Pη6 ≤ 0.

Proof. The energy method applied to (66) yields

d

dt

(‖W‖2J) = BT+GR1+GR2+ DI + IT, (71)

where it is assumed that̄M J̄ is a norm; the requirements are given in Lemma 1. The
boundary terms BT are exactly the same as in the single domain case (see (51)), while the
Dξ operator in GR1, GR2, and DI is replaced byDsk

ξ defined in (67). Strict and strong
stability of (66) follows if

IT = WTD ⊗ (6Pη + Pη6)W ≤ 0. (72)

BecauseD ≥ 0, we need6Pη + Pη6 ≤ 0. j

Remark. BecausePη > 0, 6 ≤ 0 with the first and lastr elements in6 being constants
would satisfy condition (72).

5. NUMERICAL EXPERIMENTS

The analysis in this paper deals with a scalar problem while interesting examples in
most cases involve systems of equations. However, if a symmetrizer exists, most of the
techniques in this paper (the energy method for boundary and interface conditions) can be
used to analyze systems.

In the calculations below, we have used the fourth- and sixth-order schemes reported in
[17] in space and a five-stage fourth-order Runge–Kutta (RK) scheme [30] in time. The
penalty parameterσ in (58) is choosen to produce a suitable spectrum for the RK scheme.
That often meansσ = 1/2, which corresponds to maximum penalty on the downwind side.
In terms of the original penalty parameters, [see (54)] it meansσL = 0 andσR = −1.

5.1. Vanishing Wave Speed

For problems with a realistic geometry, one will frequently encounter zero wave speed
somewhere in the field due to the variation of the metric coefficients, the variable coefficients,
or (for nonlinear problems) the solution. This difficulty (see Section 3.4.2.), particularly
severe in one dimension, is exemplified in the calculation of Burgers’s equation shown in
Fig. 5.

The instability that develops close to zero wave speed when using a penalty on the fluxes
at the interfaces is evident. With interface conditions applied on the variable instead of
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FIG. 5. Instability due to vanishing wave speed and flux interface conditions.

the fluxes or by using the Q-formulation, the instability disappears. Also, if one scales the
problem such thatU varies between 1 and 3 instead of 0 and 2 one can use flux interface
conditions without any sign of instabilities. This anomalous behavior associated with a
vanishing wave speed occurs with other numerical schemes and is typically suppressed by
adding dissipation (e.g., the “entropy fix” used with Roe solvers).

5.2. Varying Wave Speed

The 1D Maxwell’s equations with boundary conditions for a perfectly electric conductor
are

µ
∂Hy

∂t
= ∂Ez

∂x
, ε

∂Ez

∂t
= ∂Hy

∂x
− σEz, Ez(0, t) = Ez(1, t) = 0. (73)

By lettingµ = ε = 1, σ = 0 andu1 = Hy − Ez, u2 = Hy + Ez we obtain

ut + Fx = 0, [x, y] ∈ Ä, t ≥ 0, (74)

whereu = (u1, u2)
T and F = (a(x)u1, b(x)u2)

T . Note that we have introduced varying
wave speeds and that the 1D problem is considered on the 2D domainÄ = [x, y] ∈ [0, 1]×
[0, 1].

The problem (74) is 1-periodic iny and has

u1(0, y, t) = αu2(0, y, t), u2(1, y, t) = βu1(1, y, t) (75)

as boundary conditions in thex direction. Fora = 1, b = −1 we haveα = β = 1, which
corresponds to the boundary conditions in (73). By introducing a 2D curvilinear mesh we
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obtain

Juτ + (F̂)ξ + (Ĝ)η = 0, [ξ, η] ∈ Ä̂, τ ≥ 0, (76)

whereF̂ = Jξx F, Ĝ = Jηx F , andÄ̂ = [ξ, η] ∈ [0, 1]× [0, 1]. The problem (76) has the
same boundary conditions as (74).

5.2.1. The Energy Growth in 1D

The energy growth for the 1D(y = 0, ηx = 0) version of (75), (76) with

a = 1+ εx, b = −1+ εx, α = 1, β =
√
(1+ ε)/(1− ε) (77)

leads to‖u‖2t = −ε‖u‖2 . The growth rate−ε/2 corresponds to a single eigenvalue on the
real axis in the continuous spectrum. Note that (75), (76) constitute an extremely sensitive
test problem in which, one can specify the growth or decay of the solution exactly. Figure 6
shows the error in the sixth-order numerical approximation of this eigenvalue for different
transformations(x = x(ξ)). Figure 7 shows the convergence (in anL2 sense) of the seven
eigenvalues with most accurately converged real parts. The convergence rate in both Figs. 6
and 7 is at least 6.

Even though the resolved eigenvalues (and eigenvectors) converge at the theoretical rate
(see Figs. 6 and 7), there are unresolved eigenvalues and eigenvectors that can generate
difficulties. In Fig. 8, the least resolved eigenvector corresponds to an eigenvalue with
a negative real part (−4.6529× 10−3) significantly more to the right of the analytical
value(−7.5000× 10−3) than could be expected by the order of the approximation. These
unresolved eigenvalues and eigenvectors may generate extra energy growth. The difference

FIG. 6. The error in the growth rate for different transformations.
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FIG. 7. The error in the growth rate for varying wave speeds.

between the growth rate in actual calculations and the analytical growth rate is shown in
Fig. 9. As indicated in Fig. 8, the growth rate of the smooth sinusoidal initial functions
converge to the analytical growth rate while there in no convergence for the nonsmooth
sawtooth function. Ongoing work deals with adjusting the difference operators and moving
the unresolved eigenvalues.

FIG. 8. Eigenvectors for the two most and the least resolved eigenvalues.
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FIG. 9. Extra growth due to unresolved features and initial conditions.

5.2.2. The Energy Growth in 2D

The energy growth for the 2D continuous problems (75), (76) is identically zero with
ε = 0 in (77); i.e., theL2 norm of the solution remains constant in time. In the semidiscrete
case, the energy growth is given by (71) where GR2= DI = 0, and the introduction of

FIG. 10. A four-block mesh; linear mapping.
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FIG. 11. Growth rates; linear mapping.

boundary conditions BT and interface conditions (IT) leads to damping. Possible error
growth [see (45)] is provided by

GR1= −[(U, Dξ F̂)− (DξU, F̂)] − [(U, DηĜ)− (DηU, Ĝ)] (78)

only. For a uniform grid (see Fig. 10) we obtain GR1= 0. The error growth (accumulation

FIG. 12. A four-block mesh; nonlinear mapping.
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FIG. 13. Growth rates; nonlinear mapping.

of temporal error) is shown in Fig. 11. The calculations are fourth-order accurate in time.
Note that there is an absolute bound on the error.

In a nonlinear mapping (see Fig. 12) the truncation errors in the metric calculation,
and consequently also in the calculation of the fluxes, leads to GR16= 0, which in turn can
generate error growth which also includes an exponential character (see Fig. 13). Also in this
case, we have fourth-order accuracy in time. Note the enormous time scale in Figs. 11 and 13.

FIG. 14. Propagating viscous shock.
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TABLE I

Twelve Subdomains, Sixth-order Explicit;

CFL = 0.3

Wave speed 49/65 65/97 97/129 129/193

−0.25 −4.610 −4.640 −4.722 −4.722
0.00 −5.115 −4.986 −4.538 −4.657
0.25 −5.155 −5.253 −5.179 −4.952
0.50 −5.331 −5.401 −5.467 −5.327
0.75 −5.523 −5.514 −5.590 −5.565
1.00 −5.635 −5.622 −5.659 −5.719

average −5.228 −5.236 −5.193 −5.196

5.3. Navier–Stokes calculations

We consider here a 1D viscous shock propagating in accordance with a Mach number
of 2.0 and a Reynolds number of 150 over a 2D domain. The exact solution of the Navier–
Stokes equation for this case can be found in [31]. At the artificial boundaries, including
the circular region in the middle, we impose flux boundary conditions by using the penalty
formulation on the fluxes with exact data from the analytical solution. At the interfaces we
impose interface conditions by using the penalty formulation on the variables.

In Fig. 14, the density and grid for the propagating shock is shown. The shock travels
from the lower left corner to the upper right corner and has almost passed out of the
computational domain that consists of 12 blocks. The sixth-order scheme and 24 gridpoints
were used in each subdomain. The grid refinement study in Table I indicates between fifth-
and sixth-order accuracy in anL2 norm, consistent with the theory in [32, 33], since we
have fifth-order accuracy at the boundaries and interfaces due to the repeated use of the first
derivative operator and relatively coarse grids.

6. SUMMARY AND CONCLUSIONS

High-order finite difference methods applied to multidimensional linear problems in
curvilinear coordinates have been analyzed. The investigation focused on the effect of
variable coefficients.

The definition of normals and data compatibility at corners were discussed. Problems
related to nondiagonal norms and a varying Jacobian were analyzed. A constant Jacobian
in gridpoints close to the boundaries is required for nondiagonal norms. Dissipation with
correct sign using nondiagonal norms requires a constant Jacobian and high resolution close
to the boundaries.

Boundary and interface conditions in both flux and variable formulations have been
investigated. Flux boundary conditions lead to energy estimates whereas flux interface
conditions lead to difficulties for vanishing wave speeds.

A new and simplified so-called Q-formulation of the penalty method was derived at in-
terfaces. The Q-formulation simplifies and extends the formulation and implementation of
derivative conditions in both one and two dimensions at interfaces. The Q-formulation com-
bines flux- and variable-interface conditions. The Q-formulation also removes the problem
with vanishing wave speeds.
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Varying wave speeds can cause additional error growth via the truncation errors even
though the boundary and interface conditions are implemented in a stable and dissipative
way. Numerical calculations confirmed the theoretical conclusions.
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