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Boundary and interface conditions are derived for high-order finite difference
methods applied to multidimensional linear problems in curvilinear coordinates.
Difficulties presented by the combination of multiple dimensions and varying coeffi-
cients are analyzed. In particular, problems related to nondiagonal norms, a varying
Jacobian, and varying and vanishing wave speeds are considered. The boundary
and interface conditions lead to conservative schemes and strict and strong stability
provided that certain metric conditions are meg, 2001 Academic Press

1. BACKGROUND

Phenomena that require an accurate description of high-frequency variation in spac:
long times occur in many important applications such as electromagnetics, acoustics
cases of wave propagation), and direct simulation of turbulent and transitional flow; s
for example [1-6]. Strictly stable high-order finite difference methods are well suited f
these types of problems (see [7—16]) because they guarantee bounded error growth in
for realistic meshes.

Most of the development for these types of methods has considered constant-coeffit
problems on a Cartesian mesh. In [17] and [18], stable and conservative boundary
interface conditions were derived for the one-dimensional (1D) constant coefficient EL
and Navier—Stokes equations on multiple domains. A similar technique was used in [19-
for Chebyshev spectral methods.

In this paper we extend the constant-coefficient analyzis in [17] and [18] to scalar mu
dimensional linear problems in curvilinear coordinates including block interfaces. Rela
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previous work includes investigations of the metric derivatives in nonsmooth meshes (
[22, 23]) and the treatment of parabolic and hyperbolic systems in curvilinear coordina
on a single domain [14]. Many of the issues discussed in this paper are adressed in [2

The rest of this paper will proceed as follows. Section 2 introduces the proble
Section 3 defines the continuous problem and discusses well-posedness. Section 4 pro
an investigation of the discrete problem. Section 5 illustrates numerical experiments an
Section 6 we summarize and draw conclusions.

2. INTRODUCTION

The 2D linear problem considered in this paper is

ut+Fx+Gy:h, [X,y]GQ, 'IEO,
u=f, [x,y]e®, t=0, Q)
Lu=g, [x,y]eé, t=>0

whereh, f, g are the data of the problerh,is the boundary operator, and

F=F'+FY, F'=au, FY=—(buux+buy),

2
G=G'+GY, G'=au, GY= —(boruy + bzzuy). @

The coefficientss;, bjj are known functions ok, y, andt. For future reference we also
introduce

by b
a=(a.a). F=(F.G). n=(.n). B= [ H 12], (3)
bo1 b2z
wheren is the outward pointing unit normal &f2. We also demand that
x"(B+BT)x > 0. (4)

Equation (1) can be thought of as a model for the Euler, Navier—Stokes, or Maxwe
equations.
We consider the following concepts of well-posedness and stability (see [25]).

DEFINITION 1.  The problem (1) is strongly well posed if the solutiois unique, exists,
and satisfies

t t
||u||é+/0 2, dt < Kce'kt{llfllé-l-/o (||h||é+||g||§g)dt}, 5)

whereK, andn. may not depend oh, f, g, and|| - | and|| - ||sq are suitable continuous
norms.

DerFINITION 2. The numerical approximation of (1) is strongly stable if for a sufficiently
fine mesh the approximative solutibhsatisfies

t t
||U||é+/0 U2, dt < Kdendt{”fngz-i-/o (||h||é+||g||§g)dt}, (6)

whereKy andng may not depend oh, f, g, and| - ||q and| - |5 are suitable discrete
norms.
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DerFINITION 3. The numerical approximation of (1) is strictly stable if the analytical an
discrete growth rates (see (5) and (6)) satisfy

nd < nc + O(AX), )

whereAx is the mesh size.

The ambition in this paper is to develop a strictly stable high-order procedure for |
in curvilinear coordinates. In so doing, the difficulties presented by the combination
multiple dimensions and varying coefficients will be analyzed. Our strategy is to min
the continuous procedure as closely as possible. The main analytical tool, i.e., the en
method, leads to

I®[If = BT + GR1+ GR2+ DI + 1T, )

where & stands for the continuous or discrete solution. BT, GR1, GR2, and DI denc
boundary terms, growth terms due to varying wave speeds, growth terms due to forc
and dissipation, respectively. IT denotes interface terms and exists only in the discrete c
The terms in (8) will be studied closely below.

3. THE CONTINUOUS PROBLEM

Consider the problem (1) on a curvilinear domain. By introducing the transformatit
t=17,x=x(¢,n),y=y(&, n and its inverser =t,& = &(X,y), n = n(X,y), the new
problem becomes

Ju 4+ (Fe+(G), =h, [e.9]eQ, >0,
f, [E.n]ef =0, (9)
9, [e.nesh t=>0

u

Lu

whereh = Jh, f, g are the data of the problem afi= [&, 5] € [—1, 1] x [0, 1]. The new
transformed fluxes are

FA =J(F- V&) = FAI + FAV, Ifl = élu, FAV = —[Blll.lg +B]_2Un],

3 A1 AV Al _ 5 AV t i (10)
G=JF - V=G +G", G =8&u, G'=—[byus+ bggun],
where
a4 =Ja-VE b= JVET . BVE, b= JVET. BV,
A ) . - . (12)
& =1Ja-Vn, by=JVy' -BVE, byy=J3Vnp -BVp
andB is given in (3). For later reference we include the metric relations
I =Yy, Iy =X J=XYp—Xp¥e,
(12)

I = —Ye. Iny=%e, I = (Eany — &ym)
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3.1. The Energy Method

Let
1 1
(“’”)Jz/o / () Ide dn. Ul = (U, W, (13)
1
1 1
(U, v) = /0 / () dedn, ul? = (w.v) (14)
1
(u, v)E,W=/O (uv)g,w dn, ||U||ZE,W=(U, WEe w, (15)
1
(u,v)N,s=/ (Un.sdE, U= (U Uns (16)
-1

denote the weightedl, scalar product and norm, tHe, scalar product and norm, the
boundary scalar products, and boundary norms, respectively. The subBgifitsN, and
Srefer to the EAST, WEST, NORTH, and SOUTH boundaries, as in Fig. 1.

The energy-method applied to (9) leads to

(Iul3), = —[(u F' +2FY)e — (u, F' + 2FV)y]
EAST-WEST
— [, G +2GY)y — (u, G' +2GY)g]
NORTH-SOUTH
— [(u, FY) = (ug, F') + (u, G)) — (u,, GH] +[(u, ) + (h, w)]
+ [us, FY) + (FY, ug) + (u,, GY) + (GY, uy)]. 17)

DI

GR1 and GR2 in (17) can lead to a growth or decayui5 but will not affect well-
posedness; they can be estimated as

1 -
GR1< nycllull?>, GR2< nzC||u||2+n—2||h||2. (18)
C

The metric relations (12) show that GR1 vanishes for constant-coefficient problems.
bound ||u||3 in time, the first two terms must be bounded using the correct bounda

NORTH
n=1
WEST EAST
E=-1 €=+1
SOUTH

FIG. 1. The computational domain.
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conditions and the dissipation DI must have the right sign. The introductioe-ofu; , u,)T,
T = (Ve, V,) leads to (see Egs. (17), (10), and (11))

Dl =—-J(Tv)"(B+B")(Tv) <0 (19)
since (4) holds.

3.2. Boundary Conditions

Consider the first two terms in (17) and recall the definitions (3). The outward pointil
unit normal ors$2 is

_FVn

+V
néE==+1n = ; nén=01= , (20)
[Vn|

Vgl
where|VE| = /&2 + £2 and V| = , /nZ + nZ. With piecewise continuous normals, the

integration by parts procedure leading to (17) is well defined.
In [27] it is shown that the boundary conditions leading to an energy estimate becorr

—ay(—1,n,t)=—-Ja- V& <0, JF-VE=F =Fy(,1),
—8y (-1, 9.t) =—Ja-VE =0, JFV.VvE=F'=Fym.0,

A Y 2V ~V (21)
+a(+Lnt)=Ja-VE <0, JF-VE=F =Fe(,t)

até = +1, while
—&(£,0,t) = —Ja-Vyp <0, JF-Vn=0G=Gg(, 1),
—8(£,0,t) =—Ja-Vyp =0, JFV.Vp=G"=GYE.),
(22)

+a(5, L.ty =Ja-Vn =0, JFY . Vp=GY =G,
+8(E, L) =Ja-Vn <0, JF-Vn=G=0Gn(E, 1)

should be used at = 0, 1. A compact formulation of (21) and (22) (see also [24]) is
a-n<0=>F.n=Fsq-n, a-n>0=F'.n=F},-n. (23)

In [27] it is shown that the boundary conditions (21), (22), (23) leads to the estimate

1 -
(lul3), = >°  =IFil} +GR1+ GR2+ DI, (24)
I=E.W.N.s !
where
Fe=oFE+ (1 —0o)FY, o1=(1-|a/a1)/2,
Fw=o0sFw+ (L —03)Fy, o3=—(1+|a/a1)/2,

. . (25)
N =0sGn + (L—05)GY, o5=(1— |&l/8)/2,

Gs=07Gs+ (1—07)GY, o7=—(1+ |&l/a)/2

(@R
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and

) Joaalu?dy ) J2,18du? dg
EsW= — 1 -~ . s NsS= — 1 -~ .
Jou2dn le=1a Jhuzds 110

The parametergg, nw, 1N, 1s are strictly positive ifa;, &, are zero for a finite num-
ber of points. For vanishing wave speeds in (25) we defité; =0)=0,i =1, 3 and
0i(=0)=0,i =5,7.

Time-integration of the estimate (24) leads to an energy estimate of the form (5) if (1
holds. Provided that a solution exists we can conclude that the following theorem hold:

THEOREM1. Problem(9), (21), (22)is strongly well posed.

3.3. Treatment of Corners

At the corners of the computational domain, the normals are discontinuous and extra
is required. As an example, the valuenaflose to the NORTH-EAST corner (see Fig. 1) is
given by

nn(l 1 = 5'L"8+ n1-4,1, ne(L, )= 5|LI'T8+ nln=1-3). (26)

The normals close to the other corners are defined in a similar way. The metric coefficie
atthe corners are well defined. Once the corner values of the metric coefficients, the norn
the wave vector, and the fluxes (see (20), (10), (11)) are well defined, condition (23) car
applied.

Another aspect of corner treatment is the boundary data compatibility. Consider the g
erally formulated problenf (U, , Ug, Uy, U, Ugy, Uyy) = O, whereP is alinear differential
operator with boundarycondltloﬁ(u Ug, Uuy) = (1, . 7)andG(u, Ug, Uy) =g, L 1)
close to the NORTH-EAST corner. We can differentiitef with respect to, t andG, g
with respect t&, 7. By doing that and using = 0 to reduce the number of unknowns, we
obtain a matrix equation of the forrAU = H, whereU = [u, u,, U, U,, Uz, .. ]" and
H:[f,g, f‘[ag‘f7 fﬂ’g&:"'-]T' 5 ~

The rows ofA are given by the coefficients iR, F, andG. The number of compatibility
conditions are given by the number of linearly dependent rowA. iWith two (or more)
rows identical inA, the corresponding componentsHnmust also be identical; that identity
is called a compatibility condition.

As an example, consider Laplaces equaU@glJr u,, = 0 close to the NORTH-EAST
corner augmented With = aqU + Biug, G = axu + Bou,. The relationsE = f,G = g,
andF, = f,, G; = g: lead to

o pr 0 O u [ f a2 0 0 —pip2 u
ar O ﬂz 0 Ug _ g N Ol1012 0 0 —/31/32 U;
0 0 a1 B u, f, 0 0 a1 B Uy
0O a2 O B2 Ugy _gé 0 a O B2 U
[ao f — B10:
_ | @19 = B2f,
= ‘
L O:
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Obviously ax f — B10: = 19 — B2 f, is required (the compatibility condition). Higher
order compatibility conditions are obtained by considering higher derivative3, d¥,
andG.

Remark. As was shown above, it is an algebraically complex procedure to explicit
formulate the compatibility relations, even for simple model problems. However, comg
tibility is guaranteed if the same continuous solution is used to provide data forfboth
andg. In that case we havé(1,n, t) = h(1,n, 1), 9,1, t) = h(, 1, t). At far-field
boundaries that situation often occurs sihce h,, = const is a common choice.

3.4. Interface Conditions

Boundary and interface conditions of the flux type (see (21) and (22)) require extra cart
treatment; see [28] for an example.

3.4.1. Interface Conditions in the Curvilinear Case

To apply the Simultaneous Approximation Term (SAT) technique [16] on the fluxes
an interface between two blocks with different coordinate transformations and match
gridlines (see [17], [18] for the 1D treatment) requires that we identify the continuous pe
Matching gridlines at = &, = const implies

Xe)1 # Xe)2,  (Ye)1 # (Yedo, (XK1= (X2, (V)1 = (V)2 (27)

while we have

Xe)1 = (Xe)2,  (Ye)1 = (Ye)2, (X1 # (X2, (Y1 # (Vo2 (28)

atn = no = const. The subscripts 1, 2 refer to the two coordinate transformations.
Equations (10), (12) and (27), (28) immediately lead to the conclusion that

Fi(%0, 1, T) = Fa(&0, 1, 7), Gi(ko, 0, 7) # Galko, 1, 7), (29)
F1(¢,m0, T) # F2(&, 10, T), Ga(€, 1o, 7) = Ga(&, o, 7); (30)

i.e., F is continuous across = const whileG is continuous acrosg = const.

3.4.2. Interface Conditions and Vanishing Wave Speeds

Another problem with flux-interface conditions appears when the wave spgees to
zero. Consider the two constant-coefficient problems

W+ FUWyx=0 —-L<x=<0 and v+ F()yx=0 0<x<L,

where F(w) = aw + FY(w) and FY(w) = —ewy. Both problems have homogeneous
outer boundary conditions &t| = L and zero initial data, and they are connected throug
interface conditions ax = 0. We will compare the effects of flux-interface conditions
(F(u) = F(v), FV(u) = FY(v)) and variable-interface conditions & v, uy, = vy) on
the solutions.
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By transforming the problem fov on [0, +L] onto [-L, O] via the transformation
X — —&, and then replacing with x, we obtain

Yt + Ay = €VPxx, (31)

wherey = (u, v)", A = diag(a, —a), andB_, ¢y = 0 denotes the outer boundary condi-
tions atx = —L. Bgyy = O represents the transformed interface conditions

au—eUy = av + €vy, —€lUy=-+€vy OF U=v, Uy= —uvy. (32)

We will treat (31) as a half-plane problem, which means that wé let co and replace
the influence oB__ by only admitting bounded solutions as— —oo.
The Laplace-transform technique applied to (31) leads to

G(X, 8) = 01(S) exp(k1(S)X),  U(X, S) = 02(S) eXplk2(S)X),

wheres is the dual variable with respect to time and

_ 2, ](a Z_I_s __a . /(2 2+s
1= Ty 2¢ e 2T T 2¢ €

Note that bothi andv decay away from the boundaxy= 0.

The interface conditions (32) lead to the equati®fs)c = 0 wheres = (01, 02)". A
well-posed bounded solution is obtained only if d&ts)) #= 0 for %i(s) > 0. The flux-
interface and variable-interface conditions in (32) lead to

2 2
detE;(s)) = —ZeaW, det(E,(s)) = 24/ (3) + S (33)
2¢ € 2¢ €

respectively. Obviously the flux-interface conditions can lead to unbounded growth |
vanishing wave speeds, becausg Hel,_.o = 0 independent of. The variable-interface
conditions, on the other hand, lead to a well-posed problem sin¢E det,o = 2./(s/€).

A similar analyzis of the flux-boundary conditicewu — euyx = O for the single do-
mainyields detE(s)) = a/2 + /(a/2)2 + se. Consequently, the problem with unbounded
growth for vanishing wave speed does not exist in the boundary condition case bece

det(E)a_o = +/(s¢).

Remark. As a consequence of the investigation abave will use flux conditions at
outer boundaries and variable conditions or a combination of variable and flux conditic
(see theRemarkat the end of Section 4.3.2) at interfaces.

4. THE DISCRETE PROBLEM

LettheN x N matrix P and theM x M matrix P, be 1D symmetric positive definite
matrices with blocks in the upper left and lower right corner, see [27]. A praducan be
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NORTH
n=1
N
WEST M j EAST
-1
i-11
E=-1 §=+1
SOUTH

FIG. 2. The single domain case in transformed space.

arranged discretely (wheea ~ AV) as (see Fig. 2)

A Vi ] Vig
A, 0 Vs Viz
AV = I O VA Y R €< )
0 An-1 V-1 Vim-1
An Vi Vim

where A; = diag(aj). Also, the N x N matricesJg, Jw, l¢ and theM x M matrices
In, Js, |, have the form

0O --- 0 1 -0 1 ---0
JEn=|: . i, dws=1|: oo ley=| o 1] (35)
0O --- 1 0O --- 0 o --- 1

The subscript&, W, N, andSreferstothe EAST, WEST, NORTH, and SOUTH boundarie:
(see Fig. 2).

4.1. The Norms

The norms and scalar- products corresponding to (13)—(16) are

U.V); =UT(P:® P)JV, (U,U);=|UJ53, (36)
(U,V)=UT(P,® P)V, (U ,U)=|UJ|? (37)
U, VIew=UTJew®P)V, [U[Ey=U,Uew. (38)
U.Vns=UT(P:® I\ 9V, [UlRs=U.Uns. (39)

Obviously, the relations (37)—(39) define norms siifeand P, are positive definite ma-
trices. What aboutP: ® P,)J in (36)?
The metric scalad is defined in (12). In matrix formulation we have

J=diagJi),i =1,...,N J =diagJj),j=1,..., M. (40)

In [27], the following lemma was shown to hold.
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GRID REFINEMENT ON (PD +DP)

0 [ e

o 5 D, = 1 + 100 sin(alpha x)’
=
$ P = 6th-order norm
g |
o 10
E 1
3
E negative eigenvalues
£ 15 — — — — positive eigenvalues
=

20

! I I I I | I I I I | I I
100 200
Gridpoints

FIG. 3. Minimum eigenvalue oP D + DP as a function ofAX.

LEMMA 1. Let M = P;: ® P,. If the first and last r components ify are constants and
the first(Jy, ..., Jg) and last(Jn—g-1), - - ., In) Q blocks in J are equathen MJ is a
norm.

Remark. The conditionsin Lemma 1 (i.e., thAtmust be constant in the firgt r points
normal and adjacent to the boundd@gy) are theoretically ideal conditions. In practice one
approaches the ideal condition with increasing resolution on a smooth mesh close to
boundary because

JG, )= 30, j) = X0, n)( AE) + O(AED), i=1,...,q,
JGi, )= 36,00 = &, 0(jAn +OARD, j=1,...,r,

where itis assumed tha{o, j), J(i, 0) are the values af at the boundaries. This processis
illustrated in Fig. 3, where the minimum eigenvaluédd + D P as a function of increasing
resolution is shown. The minimum eigenvalue goes from a negative value fordAar¢e

a positive one for smalh x.

Remark. With lower accuracy requirements (see [27]) we can use diagonal norr
Pz, P,, which guarantees th&ll J is a norm for allJ.

4.2. The Single-Domain Problem

The discrete formulation of (9), (21), (22) with the SAT technique [16] for incorporatin:
flux boundary conditions is

JU, + D:F +D,G=h+PT, U®© = f, (41)
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where the continuous derivativés, G, are approximated with

D:F = (P.'Q:®1,)F. D,G=(l:®P'Q,)G (42)
and

PT= (P, e® 1,%1)(F—Fe)+ (P71 e ® 1,%2) (FV — FY)

+(P7Iw ® 1,23) (F — Fw) + (P 1w @ 1,24) (FY — Fy)

+(1:35® PPN (G — G) + (1:Z6 ® P, M IN) (GY — GY)

+(1:27® P, 1Js) (G — Gs) + (1:Zs ® P, 1 Js) (GY — GY). (43)
For notational simplicity, the “hat” notation for the fluxes and transformed coefficien
introduced in (9)—(11) are omitted. THé x N matrix Q; and theM x M matrix Q,

are defined below in (46). Fluxes with subscriftswW, N, andS are boundary data. The
matricesX1—Xg will be determined below.

Remark. In (43), compatible data in the sense that was discussed in Section 3.3 is u:
Compatibility is a continuous issue; the discrete task is to impose the (compatible) dat
a stable and accurate way.

4.2.1. The Energy Method

Multiplying (41) from the leftwithU T (P: ® P,), introducing the notatioM = P; ® P,,
and adding the transpose of the equation leads to

(IU13), = BT + GR1+ GR2+ DI, (44)
where BT= E-W+ N-S+ (U, PT) + (PT,U) and
E-W=—[U"(B: ® P)(F' +2FY) + (F' +2FY)"(B; ® P,)U]/2,
N-S= —[UT(P: ® B,)(G' +2GY) + (G' +2GY)T(P: ® B,)U]/2,
GR1= —[[(U, DsF") + (D:F',U)] — [(F', D:U) + (DU, FH]] /2
-[[wv,Db,G"H +(D,G", V)] - [(G', D,U) + (D,U, GH]/2,
GR2= +[U"Mh +h"MU],
DI = +[((D:U, FY) 4 (FY, D:U) 4+ (D,U), G¥) + (GY, D,U)].

(45)

In (44) we have assumed that the metric transformation is suchMidais a norm. The
notations and abbreviations

Q:+Q/=B:=J—-Iw Q+Q =B, =h—-1Js (46)

have been used to expand (44).

Note the close similarity of the discrete energy estimate (44), (45) with the correspond
continuous one; see (17). Just as in the continuous case GR1 and GR2 will at most cl
an exponential time growth; they can be estimated as

1
GR1< ngllUJ2 GR2< nylUJ%+ @nhnz. (47)

We make the following assumption.
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ASsSUMPTION1. The bounds in the estimates (18) and (47) satisfy
na < mic + O(AE, Ap), i=12 (48)
To obtain an energy estimate we must determine under what conditions the dissipa

(DI) is negative definite and which values we must assign to the mafficesg to obtain
bounded contributions from the boundary.

4.2.2. The Numerical Dissipation

The DI (see (10) and (45)) is

D:U
Dl = —
D,U

whereBy (i, j) = bk (&, nj). In[27], the following lemma was shown to hold.

BiiM + MB;1 BoiM + M By,

(49)
BioM + MBz1  BxoM + MBy,

D:U
DU |’

LEMMA 2. If the boundary blocks H, HR in P; have the size ¢ g. the boundary
blocks I—g- HnR in P, have the size i r, and the matrices B in (49) are constant in the
first g, r points normal and adjacent to the bounda, then the dissipation DI defined in
(49)is negative definite.

Remark. The conditionsinLemma?2 (i.e., thatthe matri@sin (49) are constantin the
firstq, r points normal and adjacent to the bound&ey are theoretically ideal conditions. In
practice, one approaches the ideal condition with increasing resolution, smooth coefficie
bi; and a smooth mesh; see the tRemarkson J in Section 4.1.

4.2.3. Boundary Conditions

Let us estimate the terms at the EAST boundary. By collecting terms we get

BTe = —{UT[P,(1/2— Zp]F' + (FHT[(1/2— 2] )P,JU}
—{UT[P,( =21 — Z)IFY + (FV)T[(1 = 2] — 2])P,JU}
~[UTP,Fe+ (Fe)"P,U],
whereFe = £1Fe 4+ Z,FY.
Obviously, the terms involving the viscous fluxes must be removed. This yi2lds

| — ;. By observing thaE' = AgU whereAg = diag((&)nj) (see (11) for a definition
of &) we obtain

BTe = -UT[P,(1/2— Z)Ae + Ae(1/2— 2])P,JU —[UTP,Fe + (Fg)"P,U].

Now we choos&; such thatl /2 — X)) Ag = |Ag|/2. This choice and an entirely similar
procedure at the other boundaries yields

1 -
(IU13), = > =IFI? + GR1+ GR2+ DI, (50)
I=E,W,N,S
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where
Fe = SiFe + (Iy - SOFY, Z1= (Iy — |AelAg)/2,
Fuw = ZaFw + (Iy — Sy, Tz = —(ly + 1AwlAyH) /2, (51)
G~N :ESGN+(IX_25)G\/’ 25: (IX_|AN|AN1)/2’
Gs= 27Gs+ (Ix — Z7)GY, 27:_(|X+|AS|A51)/2’
So=ly—%1, Si=-ly— %5 Tg=Ix—3s Tg=-L—-3%, (52
and

0 = 1(U, AU + (AU, U)]

, I =E,W,N,S
2 (U,U),

Note the close similarity between the numerical and continuous boundary procec
(see (25) and (51)). For vanishing wave speeds in (51) we follow the procedure in
continuous case (see the end of Section 3.2.) and d&fitg& = 0) =0,i = 1,3 and
Ti(3,=0=0,i =5,7.

The similarity of the discrete energy estimate (50) with the corresponding continuous
(see (24)) implies strict stability. Time-integration of (50) leads to an estimate of the fol
(6) if Assumption 1 and Lemma 2 hold. We can conclude that the following theorem hol

THEOREM2. The approximatiori41) of the problem9), (21), (22) is both strictly and
strongly stable if Assumptichand Lemm& hold andX;—Xg are given by51) and (52).

4.3. The 1D Multiple-Domain Problem Revisited

Before we consider the 2D multiple-domain problem, let us once more look at the .
multiple-domain problem considered in [17, 18].

4.3.1. Derivation of the Q-Formulation for Interface Problems

Consider the hyperbolic interface problem
U+Uy=0—-1<x<0 and »nw+vx=0 0<x<1 (53)

augmented with suitable initial and boundary data and the interface conditien at
x = 0. The straightforward approximation of (53) is

Ut + PLQLU = P oL (U — Vo)en),

(54)
Vi + PR'QrV = Prt(or(Vo — Un)ev),
where U =(Ug,...,Un)T, en=(0,...,0,DT, V=(Vo,....,Vm)T", and g = (1,
0...,07.
The boundary terms from the left ] and right R) outer boundaries are ignored. The
formulation (54) can also be written as

PW + (Q + X)W =0, (55)
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whereW = (U, V)T, P = diag(P., Pr), Q = diag(Q., Qr), and
0 0

EZ i N i:|:
0 0

—oL +UL]. (56)

+or —OR

We can now split uf + X into a symmetric and a skew-symmetric part as

(Q+2)—(Q+%)T +(Q+E)+(Q+E)T
2 2 ‘
st D

Q+3T=

The 2x 2 blocks of Q%< and D corresponding to the nonzero elementEiare

st:} 0 (UL_UR)] 5_ 1

1- 20, oL +0oRr

2| —(oL —oR) 0 2|lo.+or —1-20R

Henceforth, the “tilde” sign will indicate the # 4 block that couples the solutions in the
left and right domains. Equation (55) now becomes

PW + (Q%+ D)W = 0. (57)

In [17] it was shown that (54) is conservativesi§ = o — 1. By introducing this condition
in @k and D we obtain the final form of the difference operator,

o 170 1] 1 -1
o =3[% & o=c[% 7] (59)

wheresc =1/2 — oy.
The formulation (57), (58) hereatfter referred to as the Q-formulation is a rearranged fc

of the original formulation (54). However, the Q-formulation simplifies and even exten
the possibility to formulate suitable penalty terms for second-order derivatives.

4.3.2. The Q-Formulation for Advection—Diffusion Interface Problems
Consider
Uu+FWwy=0 —-1<x<0 and vnw+F@wy=0, 0<x<l1, (59)

where F(w) = a(x, t)w — ewx augmented with suitable initial, boundary, and interface
conditions. An approximation of (59) using the Q-formulation is

PW + (Q)(AW) — €(Q%¢+ D) P1(Q%* + D3)W = Dy W, (60)

whereW = (U, V)T andP = diag(P_, Pg). The matrixA has the values @f(x;, t) on the
diagonal. The operata@s¥is defined in Section 4.3.1., and

B, — o [_11 _11], i—1 2 3 (61)
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as in (58). The dissipatiol; is formulated as acting oV, which is a more general
formulation that includes penalty on the flgx; = ca(0, t)) as well as penalty on the
variables.

We can now prove

THEOREM 3. The approximatior{60), (61) of the problem59) with the choices
01<0, 0o=0, o03=0 (62)

is conservative and stable.

Proof. The energy method applied on (60) leads to

IW[2 = (DW, AW) — (D(AW), W) — 2¢(DW, DW) — WT B(AW — 2¢DW) + IT,

GR1 DI BT

whereDW = P~1QsXW and the interface terms IT are defined as

|T—WT
~ ow],

The growth (GR1), the dissipation (DI), and the ordinary boundary terms (BT) match t
terms in the corresponding continuous estimate perfectly. The choices (62) make the 1
IT maximally negative definite and lead to stability. The approximation (60) can now ¢
be written

(63)

2D1+2€D2P_1D3 €(Dy — D3) |: W :|
€(D2 — D3) 0 DW |,

PW + Q*(AW — e P~1Q% W) = D, W, (64)

which leads to conservation.m

Consider

PW + QAW — e P~2QW) = (D1 + (Q — QAW + ¢(QS*P1Q* — QP Q)W
(65)

which is a formulation of (64) in the usual penalty form. The Q-formulation simplifies th
construction of complex suitable penalty terms considerably.

Remark. The Q-formulation also removes the problem with vanishing wave spee
discussed in Section 3.4.2. To see this let 0 in (65). Obviously, the amount of dissipation
on the right-hand side of (65) is nonzero even if the wave speesd 0. The Q-formulation
can be considered to combine flux and variable interface conditions.

Remark. The linear continuous problem (1) considered in this paper does not of cou
produce any shocks. However, conservation is nevertheless a desirable property sinc
aim for a discrete approximation with the same behavior as the linear continuous probl
whichindeed is conservative. In [18], it was shown that the conditions for conservation w
a subset of the necessary conditions for stability. In this case, the situation is similar. -
conservativion form (64) is obtained from (60) by lettibg = D3 = 0, which obviously
[see (63)] is necessary for stability since the (2, 2) element in the stability matrix is zerc
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NORTH
n=1
WEST EAST
SOUTH

FIG. 4. The multiple domain mesh in transformed space.

4.4. The 2D Multiple-Domain Problem

In this section, an interface at= 0 with matching gridlines (see Fig. 4) is considered.
Matching gridlines implies that the number of points in thdirection(M) is the same on
both sides ot = 0. We will also assume th®- = PR = P, andQ} = QF = Q,. The
difference operator@g-, D§ can be different in the left and right domains and, in general
A& # AérandNp # Ng.

Remark. The treatment of two subdomains generalizes to an arbitrary number of ¢
joining 2D subdomains, in the and/orn coordinates. The adjoining subdomains mus
have point matching gridlines, and the tangential differentiation operators at the interf:
must be identical. No corner point ambiguities exist at the discrete level, since the pro
of conservation and stability depend only on the interface treatment (including the cor
point) and the two adjoining subdomains. In principle, an arbitrary number of subdoma
can coincide at one point without causing ambiguities.

A multiple-domain Q-formulation of the problem (9), (21), (22) is
JW + DfF + D,G =M D®ZP)W+h+PT, WO = f, (66)

whereW = (U, V)T . The solutions in the leftl() and right |R) domains are denoted,
respectively, by andV, and

D =M*(Q¥®P,). D,=M'(P:®Q). (67)

In (66), PT denotes the boundary conditions in (41) at the NORTH, EAST, SOUTH, WE:
boundaries in penalty form. The derivatives inF, G are approximated Witkng. The
remaining definitions and notations used in (66) @@é = Q¢ + A,

n ML 0 - -JL 0 — QL
M = , J= L Q= 5 (68)
0 Mg 10 0 Qf
0 o0 0 0
A=| A |, D= D |, (69)
0 0] 0 0
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, A:-l[l _1}, D:{l _1} (70)

_ PSL 0
5
2|11 -1 -1 1

Ez R
0 F

The matrix coefficien® will be determined by stability requirements.
The Q-formulation automatically leads to conservation:

THEOREM4. The approximatiori66) of (9), (21), (22) is conservative.
The proof of theorem 4 is given in [27]. We will now prove the following theorem.

THEOREM5. The approximatiori66) of the problem9), (21), (22) is both strictly and
strongly stable if theorer@ holds andx P, + P, X < O.

Proof. The energy method applied to (66) yields

a(||W||§) =BT+ GR1+ GR2+DI + IT, (71)
where it is assumed tha?J is a norm; the requirements are given in Lemma 1. The
boundary terms BT are exactly the same as in the single domain case (see (51)), whils
D; operator in GR1, GR2, and DI is replaced ng defined in (67). Strict and strong
stability of (66) follows if

IT=WD® (P, +P,Z)W <0. (72)

BecauseD > 0, we needx P, + P,X <0. =

Remark. Because?, > 0, ¥ < 0 with the first and last elements ik being constants
would satisfy condition (72).

5. NUMERICAL EXPERIMENTS

The analysis in this paper deals with a scalar problem while interesting examples
most cases involve systems of equations. However, if a symmetrizer exists, most of
techniques in this paper (the energy method for boundary and interface conditions) ca
used to analyze systems.

In the calculations below, we have used the fourth- and sixth-order schemes reporte
[17] in space and a five-stage fourth-order Runge—Kutta (RK) scheme [30] in time. T
penalty parameter in (58) is choosen to produce a suitable spectrum for the RK schen
That often means = 1/2, which corresponds to maximum penalty on the downwind sid
In terms of the original penalty parameters, [see (54)] it means 0 andog = —1.

5.1. Vanishing Wave Speed

For problems with a realistic geometry, one will frequently encounter zero wave spe
somewhere inthe field due to the variation of the metric coefficients, the variable coefficie
or (for nonlinear problems) the solution. This difficulty (see Section 3.4.2.), particular
severe in one dimension, is exemplified in the calculation of Burgers’s equation showr
Fig. 5.

The instability that develops close to zero wave speed when using a penalty on the flt
at the interfaces is evident. With interface conditions applied on the variable insteac
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E:‘[ll.5 -0.4 -0.3

FIG. 5. Instability due to vanishing wave speed and flux interface conditions.

the fluxes or by using the Q-formulation, the instability disappears. Also, if one scales
problem such that) varies between 1 and 3 instead of 0 and 2 one can use flux interfa
conditions without any sign of instabilities. This anomalous behavior associated witt
vanishing wave speed occurs with other numerical schemes and is typically suppresse
adding dissipation (e.g., the “entropy fix” used with Roe solvers).

5.2. Varying Wave Speed

The 1D Maxwell’'s equations with boundary conditions for a perfectly electric conduct
are

=———0E E;(0,t) = Ex(1,t) =0. 73
Mat axﬂ Eat 8X Uz, Z(v) Z(v) ()

By lettingu = € = 1,0 = 0 andu; = Hy — E;, u, = Hy + E, we obtain
u+F=0 [xyleQ t=0 (74)

whereu = (ug, uz)" and F = (a(x)uz, b(x)u,)". Note that we have introduced varying
wave speeds and that the 1D problem is considered on the 2D d@maifx, y] € [0, 1] x
[0, 1].

The problem (74) is 1-periodic ip and has

ul(07 y7 t) = au2(07 y7 t)’ uZ(lv y, t) = ﬂul(l’ y7 t) (75)

as boundary conditions in thedirection. Fora = 1, b = —1 we havex = 8 = 1, which
corresponds to the boundary conditions in (73). By introducing a 2D curvilinear mesh
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obtain
Ju, + (F)e +(G), =0, [6,n] e ©>0, (76)

whereF = J&F, G = Ji,F, andQ = [£, n] € [0, 1] x [0, 1]. The problem (76) has the
same boundary conditions as (74).

5.2.1. The Energy Growth in 1D
The energy growth for the 1Dy = 0, nx = 0) version of (75), (76) with

a=14+ex, b=-1+ex, a=1 B=+/A+e)/1-e (77)

leads to|u[|? = —e¢||u||? . The growth rate-¢/2 corresponds to a single eigenvalue on the
real axis in the continuous spectrum. Note that (75), (76) constitute an extremely sens
test problem in which, one can specify the growth or decay of the solution exactly. Figur
shows the error in the sixth-order numerical approximation of this eigenvalue for differe
transformationgx = x(&)). Figure 7 shows the convergence (inlansense) of the seven
eigenvalues with most accurately converged real parts. The convergence rate in both Fi
and 7 is at least 6.

Even though the resolved eigenvalues (and eigenvectors) converge at the theoretica
(see Figs. 6 and 7), there are unresolved eigenvalues and eigenvectors that can gel
difficulties. In Fig. 8, the least resolved eigenvector corresponds to an eigenvalue v
a negative real part-{4.6529x 10-3) significantly more to the right of the analytical
value(—7.5000x 102) than could be expected by the order of the approximation. The:
unresolved eigenvalues and eigenvectors may generate extra energy growth. The diffel

SYSTEM STABILITY: EIGENVALUES
X =[1 + (F)/(N-1)]"™

8 =
g §th-order Explicit: Physical " Eigenvalue alphe = 0.6
4 — — — — alpha=1.0
- e alpha=1.5
SET—n alpha= 2.0
- F e alpha= 25
E -6 E T e alpha = 3.0
TR -~ _—
= T
L - ~
s oF -~ T
e SE. -
g o E \\\
- ~—
- -
E :7\\/\ ~
9—10 _:\\ """ ~
D [ -
S81F S
12
A3
- -~
P S—

20

FIG. 6. The error in the growth rate for different transformations.
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FIG. 7. The error in the growth rate for varying wave speeds.

between the growth rate in actual calculations and the analytical growth rate is showr
Fig. 9. As indicated in Fig. 8, the growth rate of the smooth sinusoidal initial functior
converge to the analytical growth rate while there in no convergence for the nonsmo
sawtooth function. Ongoing work deals with adjusting the difference operators and mov
the unresolved eigenvalues.

SYSTEM STABILITY: EIGENVECTORS

Physlcal, First, and Re{max)
0.15

[ v i
005 2~ v Y v & v
s v o 2 o ¥
® EA 0w o v
ER S v &N v
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= L qy vV & v &
< | v 7 Vi ~
v x MY 7
| = s v =
0051 L T =
B o 4 h A
- K W VoA
S %, £
[ : L
01 o -7.5000E-03, 0.0 %M v
oA -7.5007E-03, -3.140518 -
[ v -4 6529E-03, -58.62186
Coey b ey W

20 40
X: (U, 1-39; V, 40-78)

FIG. 8. Eigenvectors for the two most and the least resolved eigenvalues.
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FIG. 9. Extra growth due to unresolved features and initial conditions.

5.2.2. The Energy Growth in 2D

The energy growth for the 2D continuous problems (75), (76) is identically zero wi
€ = 0in (77); i.e., the_, norm of the solution remains constant in time. In the semidiscre
case, the energy growth is given by (71) where GRRPI = 0, and the introduction of
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FIG. 10. A four-block mesh; linear mapping.
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FIG. 11. Growth rates; linear mapping.

boundary conditions BT and interface conditions (IT) leads to damping. Possible er
growth [see (45)] is provided by

GR1= —[(U, D;F) — (D:U, F)] - [(U, D,G) — (D,U, G)] (78)

only. For a uniform grid (see Fig. 10) we obtain GR1. The error growth (accumulation

2D SYSTEM GRID

SINUSOIDAL DEFORMATION

-
Il

09

0.8

0.7

0.6

<
~

e
]

e
V]

= T T |l||||l|ll!'l|ll T

o
i

(=]

FIG. 12. A four-block mesh; nonlinear mapping.
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FIG. 13. Growth rates; nonlinear mapping.

of temporal error) is shown in Fig. 11. The calculations are fourth-order accurate in tir
Note that there is an absolute bound on the error.

In a nonlinear mapping (see Fig. 12) the truncation errors in the metric calculatic
and consequently also in the calculation of the fluxes, leads to:&Rvhich in turn can
generate error growth which also includes an exponential character (see Fig. 13). Alsoin
case, we have fourth-order accuracy in time. Note the enormous time scale in Figs. 11 an

4 T2 o 2 4
X

FIG. 14. Propagating viscous shock.
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TABLE |
Twelve Subdomains, Sixth-order Explicit;
CFL=0.3

Wave speed 4%5 6597 97/129 129193

—0.25 —4.610 —-4.640 —-4.722 4722
0.00 —5115 4986 —-4538 —4.657
0.25 —5155 —-5253 -5179 —4.952
0.50 —5331 -5401 -5467 5327
0.75 —-5523 5514 -5590 5565
1.00 —5.635 —-5.622 -5659 5719

average —-5228 5236 -5.193 5196

5.3. Navier-Stokes calculations

We consider here a 1D viscous shock propagating in accordance with a Mach nun
of 2.0 and a Reynolds number of 150 over a 2D domain. The exact solution of the Navi
Stokes equation for this case can be found in [31]. At the artificial boundaries, includi
the circular region in the middle, we impose flux boundary conditions by using the pena
formulation on the fluxes with exact data from the analytical solution. At the interfaces \
impose interface conditions by using the penalty formulation on the variables.

In Fig. 14, the density and grid for the propagating shock is shown. The shock trav
from the lower left corner to the upper right corner and has almost passed out of
computational domain that consists of 12 blocks. The sixth-order scheme and 24 gridpc
were used in each subdomain. The grid refinement study in Table | indicates between fi
and sixth-order accuracy in drp, norm, consistent with the theory in [32, 33], since we
have fifth-order accuracy at the boundaries and interfaces due to the repeated use of the
derivative operator and relatively coarse grids.

6. SUMMARY AND CONCLUSIONS

High-order finite difference methods applied to multidimensional linear problems
curvilinear coordinates have been analyzed. The investigation focused on the effec
variable coefficients.

The definition of normals and data compatibility at corners were discussed. Proble
related to nondiagonal norms and a varying Jacobian were analyzed. A constant Jacc
in gridpoints close to the boundaries is required for nondiagonal norms. Dissipation w
correct sign using nondiagonal norms requires a constant Jacobian and high resolution ¢
to the boundaries.

Boundary and interface conditions in both flux and variable formulations have be
investigated. Flux boundary conditions lead to energy estimates whereas flux interf
conditions lead to difficulties for vanishing wave speeds.

A new and simplified so-called Q-formulation of the penalty method was derived at i
terfaces. The Q-formulation simplifies and extends the formulation and implementatior
derivative conditions in both one and two dimensions at interfaces. The Q-formulation cc
bines flux- and variable-interface conditions. The Q-formulation also removes the probl
with vanishing wave speeds.
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Varying wave speeds can cause additional error growth via the truncation errors e

though the boundary and interface conditions are implemented in a stable and dissip:
way. Numerical calculations confirmed the theoretical conclusions.
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